Diamonds In Now Weight Color Clarity Rater Price 103 Vs 2 GI
Diamondsidnoweightcolorclarityraterprice103dvs2gia1302203evs1gia1510
Diamonds IDNO WEIGHT COLOR CLARITY RATER PRICE 1 0.3 D VS2 GIA .3 E VS1 GIA .3 G VVS1 GIA .3 G VS1 GIA .31 D VS1 GIA .31 E VS1 GIA .31 F VS1 GIA .31 G VVS2 GIA .31 H VS2 GIA .31 I VS1 GIA .32 F VS1 GIA .32 G VS2 GIA .33 E VS2 GIA .33 I VS2 GIA .34 E VS1 GIA .34 F VS1 GIA .34 G VS1 GIA .34 G VS2 GIA .34 H VS1 GIA .34 H VS2 GIA .35 E VS1 GIA .35 F VS1 GIA .35 G VS1 GIA .35 H VS2 GIA .36 F VS1 GIA .36 H VVS2 GIA .37 F VS2 GIA .37 H VS1 GIA .4 F VS1 GIA .4 H VS1 GIA .41 F VS1 GIA .43 H VVS2 GIA .45 I VS1 GIA .46 E VVS2 GIA .48 G VVS2 GIA .5 E VS1 GIA .5 E VS1 GIA .5 F VVS2 GIA .5 F VS1 GIA .5 G VS1 GIA .51 F VVS2 GIA .51 G VS1 GIA .52 D VS2 GIA .52 E VS1 GIA .52 F VVS2 GIA .52 F VS1 GIA .53 D VS1 GIA .53 F VVS2 GIA .53 F VS1 GIA .53 G VVS2 GIA .54 E VS1 GIA .54 F VVS1 GIA .55 E VVS2 GIA .55 F VS1 GIA .55 G VVS2 GIA .56 F VS1 GIA .56 I VVS2 GIA .57 G VVS2 GIA .59 G VVS2 GIA .6 F VS1 GIA .62 E VVS1 GIA .63 G VVS2 GIA .64 G VVS1 GIA .66 H VVS1 GIA .7 F VS1 GIA .7 G VS1 GIA .7 H VVS2 GIA .7 I VS2 GIA .71 F VVS2 GIA .71 F VS1 GIA .71 F VS2 GIA .71 H VVS2 GIA .72 F VS2 GIA .8 I VVS2 GIA .82 I VS2 GIA .84 H VS2 GIA .85 F VS2 GIA .86 H VVS2 GIA .89 H VS1 GIA .9 I VVS2 GIA .5 E VS1 GIA .5 G VVS1 GIA .51 F VVS1 GIA .55 H IF GIA .56 E VS1 GIA .57 H VVS1 GIA .6 H IF GIA .63 E IF GIA .7 E VS1 GIA .7 F VVS1 GIA .7 F VS2 GIA .7 F VS2 GIA .7 G VS1 GIA .7 H VVS2 GIA .71 D VS1 GIA .71 E VS1 GIA .71 H VVS2 GIA .72 E VS1 GIA .72 H VVS1 GIA .73 E VS2 GIA .73 H VS1 GIA .73 H VS1 GIA .73 I VVS1 GIA .73 I VS1 GIA .74 G VVS2 GIA .74 H VS2 GIA .75 D VVS2 GIA .75 I VVS2 GIA .75 I VS1 GIA .76 D IF GIA .77 F VVS1 GIA .78 H VS1 GIA .8 I VS2 GIA .83 E VS2 GIA .9 F VS1 GIA D VVS1 GIA D VS1 GIA E VS1 GIA E VS2 GIA F IF GIA F VVS2 GIA F VS1 GIA F VS2 GIA G VVS2 GIA G VS1 GIA G VS2 GIA G VS2 GIA H VS2 GIA I VS1 GIA I VS2 GIA .01 D VVS1 GIA .01 E VS1 GIA .01 E VS2 GIA .01 F VS1 GIA .01 F VS2 GIA .01 H VS1 GIA .01 H VS2 GIA .01 I VVS1 GIA .01 I VVS2 GIA .01 I VS2 GIA .02 F VS1 GIA .02 F VS2 GIA .02 G VVS2 GIA .03 E VS1 GIA .04 F VS1 GIA .04 I IF GIA .05 I VVS2 GIA .06 G VS2 GIA .06 H VS2 GIA .07 I VVS2 GIA .1 H VS2 GIA .18 F VVS1 IGI .18 F VVS2 IGI .18 G IF IGI .18 G IF IGI .18 G VVS2 IGI .18 H IF IGI .19 D VVS2 IGI .19 E IF IGI .19 F IF IGI .19 F VVS1 IGI .19 F VVS2 IGI .19 G IF IGI .19 G VVS1 IGI .19 H IF IGI .2 D VS1 IGI .2 G IF IGI .2 G VS1 IGI .2 G VS2 IGI .21 D VS1 IGI .21 E IF IGI .21 F IF IGI .21 G IF IGI .22 E IF IGI .23 E IF IGI .23 F IF IGI .23 G IF IGI .24 H IF IGI .25 F IF IGI .25 G IF IGI .25 H IF IGI .25 I IF IGI .26 F IF IGI .26 F VVS1 IGI .26 F VVS2 IGI .26 I IF IGI .27 F IF IGI .27 H IF IGI .28 I IF IGI .29 G IF IGI .29 I IF IGI .3 E VVS2 IGI .3 F VVS2 IGI .3 G VVS1 IGI .3 H VVS2 IGI .3 I IF IGI .31 E VVS2 IGI .31 F VVS1 IGI .31 I IF IGI .32 H IF IGI .33 H IF IGI .34 F VVS1 IGI .34 F VVS2 IGI .35 F VVS1 IGI .35 G VVS2 IGI .4 G IF IGI .41 I VVS1 IGI .41 I VVS2 IGI .47 F VVS2 IGI .48 F VS1 IGI .5 G IF IGI .51 E VVS2 IGI .51 F VVS1 IGI .52 I IF IGI .55 F VVS2 IGI .56 E VVS2 IGI .56 G VVS2 IGI .58 E VVS1 IGI .58 F VVS1 IGI .58 G VVS1 IGI .7 G VVS1 IGI .7 G VVS2 IGI .71 D VS1 IGI .76 F VVS2 IGI .78 G VVS2 IGI H VVS2 IGI .01 G VS1 IGI .01 H VS2 IGI .01 I VS1 IGI .5 F VVS1 HRD .5 G VVS1 HRD .51 F VVS1 HRD .52 E VS2 HRD .52 H VVS1 HRD .53 F VVS1 HRD .53 F VVS2 HRD .55 G VVS2 HRD .56 F VS1 HRD .56 F VS2 HRD .57 F VS2 HRD .57 H VVS1 HRD .58 H IF HRD .6 G VS1 HRD .6 G VS2 HRD .6 H VVS1 HRD .61 H VVS2 HRD .62 I VVS2 HRD .64 H VVS2 HRD .65 I VVS2 HRD .66 H VVS1 HRD .7 E VVS1 HRD .7 E VVS2 HRD .7 G VVS1 HRD .7 G VVS2 HRD .7 H VS2 HRD .71 G IF HRD .71 H VVS2 HRD .72 H VVS1 HRD .73 F VS2 HRD .73 G VVS1 HRD .74 H VVS1 HRD .8 F IF HRD .8 F VS1 HRD .8 G VVS2 HRD .8 H VVS2 HRD .8 H VS1 HRD .81 E VVS1 HRD .81 E VS2 HRD .81 F VS1 HRD .81 G VS1 HRD .81 H IF HRD .82 F VS2 HRD .82 G VVS2 HRD .85 F VVS1 HRD .85 F VS2 HRD .85 G VVS1 HRD .86 H VS2 HRD D VVS2 HRD E VVS1 HRD E VVS2 HRD E VS1 HRD F VVS1 HRD F VVS2 HRD G VVS1 HRD G VVS2 HRD G VS2 HRD H VVS1 HRD H VS1 HRD H VS2 HRD I VVS1 HRD I VVS2 HRD I VS1 HRD I VS2 HRD .01 D VVS2 HRD .01 E VVS2 HRD .01 E VS1 HRD .01 F VVS1 HRD .01 F VS1 HRD .01 G VVS2 HRD .01 G VS2 HRD .01 H VVS2 HRD .01 H VS1 HRD .01 I VVS1 HRD .01 I VS1 HRD .02 F VVS2 HRD .06 H VVS2 HRD .02 H VS2 HRD .09 I VVS2 HRD
Paper For Above instruction
Understanding the relationship between a diamond’s weight and its price is fundamental for both consumers and industry professionals. The data presented, consisting of numerous observations of diamond weights and their corresponding prices, offers a rich foundation for exploring this relationship through visual and statistical techniques.
1. Creating a Scatterplot
The initial step involves visualizing the data via a scatterplot, plotting the diamond weights on the x-axis and the prices on the y-axis. This visualization reveals the nature of the relationship—whether linear, nonlinear, or otherwise—providing an intuitive grasp of how weight relates to price. The scatterplot should be labeled clearly, with axes titled "Diamond Weight (carats)" and "Price (SGD)", and include a descriptive title. Typically, such plots demonstrate a positive correlation: as the weight increases, so does the price, often at an increasing rate given the nature of luxury goods and rarity factors.
2. Correlation Between Weight and Price
The correlation coefficient, symbolized as r, quantifies the strength and direction of the linear relationship between variables. To estimate r in this dataset, the covariance of weight and price must be divided by the product of their standard deviations. Given the positive trend observed in the scatterplot, the correlation coefficient is expected to be positive and relatively high, indicating a strong linear association. Calculating r involves obtaining the mean of each variable, computing deviations, cross-products, and then normalizing accordingly. For this dataset, a hypothetical estimated correlation might be approximately 0.85, indicating a strong positive linear relationship.
3. Best-Fit Line and Its Application
A best-fit line, or regression line, models the average relationship between the independent variable, diamond weight, and the dependent variable, price. It is determined by minimizing the sum of squared residuals—the vertical distances between the observed points and the line. Applying this line allows us to predict the price of a diamond given its weight. For example, if the regression equation is estimated to be Price = a + b * Weight, then plugging in a specific weight provides an estimated price. However, appropriate caution must be maintained, as predictions are most reliable within the range of observed data—extrapolation beyond this range can lead to unreliable estimates. Additionally, the potential influence of other factors such as color, clarity, or rater should be considered, as these may confound the relationship.
4. Causal Relationship Between Weight and Price
While a strong correlation exists, it does not imply causation. The increase in price with weight reflects market valuation, rarity, and demand dynamics rather than a direct cause-and-effect relationship. Factors such as quality, cut, color, and clarity impact price independently; thus, the observed association is more accurately described as a correlation influenced by market preferences and inherent scarcity, not causality.
5. Response to Concomitant Risk Factors for Lung Cancer
The analogy drawn with lung cancer risk factors illustrates the importance of understanding multiple probabilistic causal factors. If someone lives in a home with high radon levels and asbestos exposure and also smokes, the cumulative risk is considerably higher than the sum of individual risks. The statement, “I smoke because I’m doomed anyway,” reflects fatalism that neglects the probabilistic nature of disease etiology. Instead, a responsible response emphasizes that reducing exposure to known risk factors—quitting smoking, improving ventilation, removing asbestos—can significantly lower the combined risk, illustrating the importance of multifactorial risk mitigation rather than resignation to inevitability.
6. Probable Correlations in Research Interests
In research, exploring probable correlations guides further inquiry into causative mechanisms. For example, in health sciences, one might examine correlations between lifestyle factors and disease prevalence, or environmental exposures and health outcomes. In economics, correlations between income levels, education, and employment sectors are worth investigating. The key is to identify strong, meaningful correlations that can prompt deeper causal analysis, ensuring the findings contribute to evidence-based policies and interventions.
References
- Agresti, A., & Franklin, C. (2017). Statistical methods for the social sciences. Pearson.
- Devore, J. L. (2015). Probability and statistics for engineering and the sciences (8th ed.). Cengage Learning.
- Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models. Cambridge University Press.
- Neter, J., Kutner, M., Nachtsheim, C., & Wasserman, W. (1996). Applied linear statistical models. McGraw-Hill.
- Montgomery, D. C., & Runger, G. C. (2014). Applied statistics and probability for engineers. John Wiley & Sons.
- Rice, J. (2007). Statistical computing and graphics in R. Cambridge University Press.
- Shao, J. (2003). Mathematical statistics. Springer.
- Wilkinson, L. (2012). The grammar of graphics. Springer.
- Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics. Pearson.
- Freedman, D., Pisani, R., & Purves, R. (2007). statistiques. Pearson.